IB Higher Level Mathematical Exploration

Finding the Formulas That Allow a Vehicle to Track its Global Position Using Only the Rotation
of Each Wheel



INTRODUCTION

In the realm of competitive robotics, the difference between a masterful victory
and a crushing defeat can be just a millimetre. Precision and consistency reign supreme in
controlling of the robot. This is especially true in programming challenges where a robot
may need to travel long, winding distances to complete an objective. During these
moments, programmers who use the complex odometry libraries find themselves with a
significant advantage. This is because odometry is a system of using only wheel inputs
from any vehicle to track that vehicle’s position and heading. It is akin to a GPS system

but based solely on the robot’s dimensions and wheel-rotations.

Rationale

As a competitor myself, I have taken advantage of free code packages that
automatically implement odometry tracking on my robots, however, they harbour many
limitations, the main one being their lack of flexibility. The majority of existing odometry
implementations use a specific, inefficient project structure, or may sometimes require
the input of additional sensors for full tracking potential. To avoid these inconveniences,
and to satisfy my curiosity behind the inner workings of these odometry libraries, I will

derive the relevant equations necessary to build my own odometry implementation.

Aim
The objective of this investigation is to derive all the equations necessary to track
a vehicle’s heading, x-position, an y-position across any path it takes. These equations
should apply to any vehicle with skid-steering or differential wheels, as long as it has a
pair of wheels that are parallel to the forwards-backwards motion of the vehicle (like a
car, pram, tank, truck, RC car, shopping trolley, robot, etc.).
Plan of Action



Finding the odometry equations will primarily delve into geometry. This will
include trigonometry, arcs, angle-equivalence rules, coordinate graphing, and more.
Many fundamental and advanced geometrical rules will play a crucial role in
understanding the spatial configurations of the vehicle and its path to generalize the
motion of the vehicle. In addition to this, other operators like summation (3}) and
piecewise functions will be used in conjunction with domain/range analysis to bridge the

gap between theoretical mathematics and practical implementations.

Geometric outlining software, like Fusion360’s sketching features will be used to

represent each explored scenario and will be used to verify any resultant equations.



EXPLORATION

Pathing:

To begin this task, I started with basic geometrical reasoning. The path a vehicle
takes to get from any point to the next is not a regular geometric shape. The path of the
vehicle can be any curved line from an infinite spectrum of possibilities. I cannot use any
of my mathematical knowledge on an irregular line, so I will need to break each path into

small sections that can be approximated as a friendlier shape.

Figure 1.1: An example of a vehicle’s path. The sketch is a bird’s-eye view of the situation
where the rectangle is the vehicle and the long, curving line is an example of the path that

vehicle may travel. The dimensions assigned to the rectangle could be anything else.
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Figure 1.2: Another example of a vehicle’s path. Once again, the path is random and irregular,

making it difficult to use any data of the entire path.




Initially, I tried dividing any line into smaller, manageable straight lines, but this
was unsuccessful because the lines would have angles between them that were difficult to
solve for. Therefore, I divided the vehicle’s path into arcs. Arcs allow me to take distance,

curve, and angle change into account much more simply.

Figure 2.1: A section of a vehicle’s path
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Figure 2.2: This same section as a series of arcs. Each black point on the path is the endpoint
of an arc (both the end of one arc and the beginning of another). In this way, a series of arcs

are excellent at approximating a complex line.
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In this way, any vehicle only needs to assume its travelling in an arc for the last
few milliseconds (interval length), then perform some calculations over that interval to
determine the current arc’s change in x-position, y-position, and angle, and sum up these
values to all the previous values to update its total positioning. After this, the vehicle

should calculate another arc for the next interval and repeat the process.

Figure 2.3: The intended use for the upcoming formulas

Start a new interval by
getting the change in
rotations of each
wheel since the last
interval.

Aggregate this Calculate the change
interval's values to the in 8, x, and y accross
overall values. this interval's arc.




Wheel-sensor values into path-distances:

To find the ‘calculations over that interval’, much more geometry was needed.
Firstly, I needed to determine the distance a wheel has travelled given only the rotation
and dimensions of that wheel. This will come from the formula for the circumference of a

circle.
C =2nr

I know the radius, r, of the wheel on any given vehicle for this purpose, so I can
get the distance, D, the wheel travels by multiplying the circumference with the number
of rotations, R (for a 540° rotation, R = 1.5). This R is also the value I get from a given

wheel’s sensor, coming from one of my ‘givens’.
D =CR

D = 2nrR

Figure 3: A bird’s-eye view of a vehicle (the rectangle) following the path of an arc.
The black arc is the robot’s path, the green arcs are different-length arcs that were
followed by the right and left wheels of the vehicle. Each arc follows the formula D =
2nrR where D is the length of the arc, and R is the number of rotations from the sensor

(different between the right and left sides).
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Finding vehicle heading:

Each arc will also follow the arc-length formula where D is still the length of the
arc, r is the radius of that particular arc (unknown), and @ is the angle that arc covers

(unknown):
D =160

This formula involves 8, a convenient variable because the change in heading of
the vehicle is the same as the internal angle of that arc (since the heading of the vehicle
will be represented just like the unit circle). However, in the above formula, I have two

unknowns, r and 6.

Fortunately, I will also have two equations because both the left and right arcs are

different from each other while their angles remain the same.

DL = T‘L@ DR = TRQ

2nrR;, =10 2nrRp = R0



To further solve this into a system of equations, I will need another variable in

common between the left and right arcs. This will happen by the observation that each

arc’s radius constitutes the central path-arc’s radius (7;,) and either and addition or

subtraction of half the vehicle’s width (w) for the left and right sides respectively (can be

seen in Figure 3).

TL=Ttw TR=T,—W
2nrR; = (rp + W)H 2nrRp = (rp — W)H

Solving for 7, in each equation:

2nrR; = (rp + W)H 2nrRg = (rp — W)H
2nrR; 2nrRy
I w =T, 5 +tw=m,

Now, setting both equations equal to cancel 7, and solve for 6:

2nrR; _ 2mrRp N
o "~ "¢ TV
2nrR,  2mrRp 5
9 g Y
2nrR;, — 2nrRy
= 2w

0

2nrRy —2nrRp

2w

This formula allows a vehicle to calculate its change in heading when travelling in

an arc using only the number of rotations in each wheel and some dimensions of the

vehicle. The formula above is also generalizable to any arc the vehicle may follow. This

1s because, since the width of the vehicle will never be 0 and none of the other variables

have bounds, the domain of the function is infinite. This formula will also effectively

track arcs that turn in an anti-clockwise manner (unlike Figure 3) and will just represent

those changes as negative.



In order to make this formula better standardised for future calculations, I have
multiplied the left side by —1. This is because the formula currently breaks the
convention of the unit circle where anti-clockwise rotation is an increase in motion.
Multiplying by —1 will effectively keep the magnitudes of the results the same, it will

only flip the direction of increasing angle.

_anRL + anRR
=0
2w

2nrRp — 2nrR;,

2w

Finding vehicle displacements:

Figure 4: an extension of the current path modelling which includes the lines for x
(17.889) and y (4.965) displacement as well as a chord subtending the arc that
represents the hypotenuse (18.575) of the triangle (in blue) formed with x and y.
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Figure 4 demonstrates another convenient geometry of this system: the x and y
displacements of the arc-path form a right-triangle with the chord (h) that subtends the

arc. This means I can use SOH-CAH-TOA trigonometry to solve for these values:
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x =hcosf y = hsin@

Now, the cosine formula can be used to solve for h by solving on the triangle

created with the radii of the arc and the chord.

2 _ .2 2 _
h =1n"+1n 21,1 cos @

h= \/erz — 21,2 cos @

h = \/erz(l — cos0)

I have not solved for any of the arc’s radii yet because I cancelled them in the
initial system of equations. Choosing either the right or left arc formula would solve 7,.

Here, I have selected the left side:

This equation has a limitation in the fact that the sign of 6 matters. In a path’s arc,
whether the vehicle turned —20° or 20° should not matter because the arc and its chord
will have the same dimensions. However, the dimensions of the chord’s length will be
incorrect if the angle is negative in this formula, therefore, the 8 needs to be surrounded

in an absolute value operator.
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_ (2nrRL ) 1 9 0
y = o] w) ( cos)sm2

2

0
W) (1—-cosB)- cos >

2nrR;
= |2 ( _
6]

These equation work well for almost all paths, but they have one small issue: their
domains are restricted. This is because, since 8 is in the denominator, a result of no angle
change will cause h to be undefined, ruining the calculations of the interval that the
vehicle moves on. To solve this, both x and y can use a special-case-handling using a

piecewise definition.

Figure 5: the vehicle moving in a straight line, an exception case for the main formulas
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The original equation is still valid for any other angle, but if the robot travelled in
a straight line without turning, the expression for determining h would have to be just the

distance travelled by any one of the wheels.

2nrR; z 0
( —w) (1—cost9)-cos§, 6+0

ZmﬂRL-cosz, 6=0
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2

2nrRy, 0
2( —W) (1 —cos@)-sin=, 6+0
)= 0] 2

7]
anRL-sinE, 6=0

I have kept the sine and cosine functions for each of the special straight-line cases

for future reference since their inclusion still maintains proper results.
In this way, the value for y when the robot moves straight will always be 0
because sing = 0 and the value for x will always be the distance that the wheel travelled

0 . o . . o .
(2nrR;) because cos 5= 1. This maintains the consistency with unit-circle conventions

where 0° is a horizontal heading.

Arc Formulas:

From the above calculations, using only the radius of the vehicle’s wheel, r, the
number of rotations of each wheel’s sensor, R; and Ry, and the width of robot, 2w, one
can determine the vehicle’s change in heading, 8 and cartesian position, x and y, when

moving in an arc.

2nrRp — 2nrR;, p

2w

2

r\j 27TT'RL
2( —w) (1 —=cos@8)-cos

6]

L 2nrR; - cos

(| 2nrR, V2 0
2( o] —W> (1 —cos@)-sinz, 6+0

<
I

L 2nrR; - sin— 6=0
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These formulas can also be verified for special cases of non-arc pathing.

If the vehicle travels in a straight line, the geometry no longer follows an arc.
Fortunately, the math and formulas above still work. The change in angle will be
correctly represented as 0 (because R; and Ry are equal, so the numerator turns to 0).
The value of x will also correctly be 0, as handled by the piecewise operator, and the
value for y would also be correct, since it would use the raw distance that the wheel

travelled.

If the vehicle turns in place (as some differential-drive robots can), the formulas
still work because the wheels would still rotate, giving an accurate angle. The geometric

arc representation would just have zero-length radii while still maintaining the proper

2mrRy,

central angle. The that both the x and y equations share would always equal w in

2WrRy,
161

this special case of turning-in-place, meaning that ( W) is 0 and that both entire

expressions are 0.

Arcs into paths:

As previously assumed, and shown in Figures 1.1 and 1.2, the current formulas
only apply to any small segment of a vehicle’s path modelled as an arc. For these
formulas to work on a full path, one must aggregate all the small arcs’ changes that the
path is modelled at. For example, the total, global value of the vehicle’s heading 6, will

need to be the sum of every arc’s 8:

O; =04+ 0, + 03 + --- + 0, for n intervals in the path

intervals
HG - Z gn
n=0
intervals
2nrRy — 2nrR;
6 _ n n
¢ =
2w
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The total, global value of the vehicle’s x-position x; will need to be the sum of

every arc’s Xx:

Xg = X1 + x5 + x3 + -+ + x,, for n intervals in the path

intervals
Xg = 2 Xn
n=0

) 2nrR 2 6
intervals ( 2 < Ln _ W> (1 —cos Qn) : Cos—n, 0, # 0

s = 16,] 2

n=0 n
L ZTITRLn'COS?, 071 = 0

And the total, global value of the vehicle’s y-position y; will need to be the sum
of every arc’s y:
V¢ = y1 + Y, +y3 + -+ y, for n intervals in the path

intervals

Ye = Z Yn
n=0

] 2nrR 2 0
intervals \/2 < In _ W> (1 —cosBy)- Sin—n, 0 #0

yG = Z |9n| 2

n=0 . gn
2nrRy, sm7,

6, =0

Through this, another problem arises. While the value of 6, will aggregate
correctly in accordance with the vehicle’s path, x; and y; will be calculated incorrectly.

Figure 6 demonstrates a possible case of failure:

Figure 6: a path with a combination of intervals can mess up the formulas.
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In this image, the initial values of x and y will be correct after the first interval’s
arc, but in the next interval, as the vehicle moves in the straight line, the y value that the
formula would return is 0, meaning y.; remains the same. This wrong because even as the
robot is moving in the straight line, the y; should still change since the robot is moving

in a diagonal trajectory upwards.

To solve this issue, the initial heading of the vehicle also needs to be taken into
account. Expanding the geometry of this situation and applying some transversal
equivalency rules, it is found that every arc’s x and y result needs to include the vehicle’s

initial heading at the start of the arc as part of the calculation.

Figure 7: another arcing path, but the robot starts at an angle of 18.1 degrees. In this
case, the formulas above would not yield the correct change in the global x and y
positions. This is because the blue triangle does not match the actual triangle of x

(19.135) and y (12.713) displacement.
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To do this, the section of the formula that converts the h value into the x and y
0 .0 . . .
components, cOS ?n and sin 7” respectively, will also add the total heading of the robot

before the arc (8;). This new consideration will also need to be applied to the straight-
line driving situation (when 8 = 0). This is because, currently, the formula always results
in O for the y value during 8 = 0 which is wrong for the cases that the robot moves in a
straight line either vertically or diagonally. Straight lines will need to multiply the h value

with cosine and sine of 6.

intervals 2nrR 2 2]
_ 2 In _y, (1—c059n)-cos<—n+9G), 6, 0
X6 = |65 2

n=0 2mrR;, - cos 6, 6,=0
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Implementation:

intervals ( Zn'rRL 2 Qn
2 L—w (1—cos€n)-sin<—+96>,
|6 2

n=0 .
2nrRy, - sinfg,

6, # 0

0, =0

Now that all the special cases have been covered and that the vehicle’s path can

be tracked as a series of small arcs and lines, these are the equations that successfully use

only the rotations of each wheel and the dimensions of the vehicle’s wheel and width to

derive its heading, x position, and y position:

Y6

. intervals 27TTRRn _ ZﬂTRLn
¢ Z 2w
n=0
intervals ( 27-[rRL 2 6,
i ) (l—cosen)-cos<7+96>,
=0 2nrR;, - cos g,
intervals an R Ln

. (On
(1 coan)-sm<7+9(;>,

2nrRy,

O

-sinf;,

To implement these equations in real-life, the vehicle needs to have a pair of

wheels that are parallel to the forwards-backwards motion of the vehicle, include rotation

sensors (encoders) on those wheels, and have known width and wheel-radius dimensions.

After this, the main way to use the equations would be to run them through code. Each

summation (}.) would be represented by a continuous loop, and the piecewise operator

would be a conditional statement. While tracking position, each interval should be as

small as reasonably possible, (perhaps less than 20 milliseconds long). In this way, a

long, intricate path would be treated as thousands of tiny arcs and straight lines.
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Figure 8: a flowchart representing the general process of tracking a vehicle’s position

using the equations above.

Start a new interval by getting the difference in
sensor values from the previous interval (R;,
and RR)

2nrRR—2mrRy,

Use 6 = to calculate the change in

w
heading over this interval.

If & = 0, use x = 2nrR; - cosB;

Otherwise, use x =

2 (% = W)Z (1 —cos@,) - cos (% n 90)

If0 =0,usey =2mrR;, - sinfg

Otherwise, use y =

2 (% = W)2 (1 —cos6,)-sin (% a4 HG)

Add 6 into 6 for a new, updated global
heading.

Add x into x; for a new, updated global x-
position.

Add y into y; for a new, updated global y-
position.

End this interval, wait some milliseconds, and
start this process again.

19




CONCLUSION

Overall, this exploration was a success. | was able to use only information about a
vehicle’s left and right wheel’s rotations to determine that vehicle’s live heading, x-

position, and y-position no matter what path the vehicle takes as it moves.

I have also been able to test the validity of these formulas with several varying
trials in Fusion360’s sketching tools. Here, I can draw out any path, create the arcs/lines
on that path for each interval, and measure the resulting 2mrR values to plug-into the
formulas. I can then check the equation’s result by measuring the difference in x and y
positions between the starting point and the final point. There has not been any failure in
all the regular functionality, special scenarios, or edge-cases that I could make,

demonstrating a practical support for these odometry formulas.

Extensions

Although these equations are great at accomplishing the initial outlined task, they
can be developed further to enhance functionality. One example of this is the
consideration of an offset in the vehicle’s starting position. In many competition
scenarios, it is convenient to assign your robot as starting at a different heading or
coordinate position than 0° and (0,0). This is helpful when setting a reference landmark
as the origin and beginning the robot’s path somewhere else. The implementation of this
quite simple: just add the assigned initial heading (6;), x (x;), and y (y;) to their

respective equations as constants outside the summation.

intervals

2nrRyp. — 2nrR
0 = 6; + Z Rn tn

2w
n=0

intervals
2nrR;, 3
X =Xx; +

2
o
—_— W> (1—c059n)-cos<—n+96), 6, #0
|6

2

n=0 2mrR;, - cos 6, 0,=0
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intervals ( anRLn 2 Qn
Yo = yi + Z 2( T —W) (1—c050n)'sin<7+95>, 0, #0
n=0

2nrR;,, - sinfg, 6,=0

Another extension to this exploration would have been an evaluation of the
possibility of asynchronous odometery. As mentioned in the Pathing and Implementation
sections, this current system relies on the computer to valuate a new interval every few
milliseconds in order to simplify a complex, irregular line into more manageable and
friendly sections. The main disadvantage of this is that there is no guarantee that the
vehicle will fully follow an arcing or straight path in any interval. Rather, the vehicle is
likely not following any arcing motion, but our intervals are small enough that the
approximation of whatever motion into arcs still yields a satisfactory result. However,
after long-use of the same odometry session, a buildup of error may occur where the little

deviances from ideal behaviour add up to a large inaccuracy.

In this case, a mathematical system that uses only the final R, and R; values after
any complex path may prove to be more accurate and computationally efficient. I tried
deriving equations that could use the overall wheel-rotation values after the completion of
any path but was not able to. Accomplishing asynchronous odometry will likely require
the discovery of some relationship between R and R; regardless of the path length,

shape, or behaviour.

Figure 9: Can the ending position of a path like this be determined only with the

overall rotations that it took the right and left wheels to get there?
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Significance

Although the concept of odometry is not my idea, and neither are some concepts
around its derivation (like breaking a path into arc-intervals), I have not been able to find
this set of equations published anywhere. As mentioned in the Rationale section, almost
all odometry implementations or explanations I have come across use additional sensor
input or have inefficient (and inconsistent) systems. On the other hand, the equations
found here are portable to any calculating system and to any vehicle just by changing the
r and w constants. These formulas could even be implemented in a spreadsheet! By
importing the vehicle’s sensor data into a spreadsheet and creating some calculation
columns with these formulas, the spreadsheet will be able to evaluate intervals and sum

them up!

Additionally, the fact that these formulas are not just for robots or cars but could

be used in any mobile base is another important feature. Just installing some rotation
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sensors on the wheels of a shopping trolley, a tricycle, or even a battle tank will still yield
valid results (as long as the wheels don’t slip, and the ground is flat). The odometry
formulas here can be especially helpful to autonomous robots in stable conditions.
Currently, many industrial robots will use ultrasonic sensors, object-detection, apriltags,
and more to track their position because those methods are more reliable than wheels that
may slip, get stuck, or traverse bumps. However, as the quality of hardware in those
robots improve, so will the capabilities of wheel-based odometry systems. Robotic
applications with no need for significant redundancy in controlled environments may

benefit from the lower complexity and cheaper expense of this odometry system.

Overall, whether or not this odometry system is implemented in a child’s tricycle,
a hobbyist’s car, or a businesses’ machines, it will definitely boast a competitive

advantage after being implemented in my next tournament robot.
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