
 

 

 

 

 

 

 

 

 

IB Higher Level Mathematical Exploration 

Finding the Formulas That Allow a Vehicle to Track its Global Position Using Only the Rotation 

of Each Wheel  
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INTRODUCTION 

 In the realm of competitive robotics, the difference between a masterful victory 

and a crushing defeat can be just a millimetre. Precision and consistency reign supreme in 

controlling of the robot. This is especially true in programming challenges where a robot 

may need to travel long, winding distances to complete an objective. During these 

moments, programmers who use the complex odometry libraries find themselves with a 

significant advantage. This is because odometry is a system of using only wheel inputs 

from any vehicle to track that vehicle’s position and heading. It is akin to a GPS system 

but based solely on the robot’s dimensions and wheel-rotations. 

 

Rationale 

 As a competitor myself, I have taken advantage of free code packages that 

automatically implement odometry tracking on my robots, however, they harbour many 

limitations, the main one being their lack of flexibility. The majority of existing odometry 

implementations use a specific, inefficient project structure, or may sometimes require 

the input of additional sensors for full tracking potential. To avoid these inconveniences, 

and to satisfy my curiosity behind the inner workings of these odometry libraries, I will 

derive the relevant equations necessary to build my own odometry implementation. 

 

Aim 

The objective of this investigation is to derive all the equations necessary to track 

a vehicle’s heading, x-position, an y-position across any path it takes. These equations 

should apply to any vehicle with skid-steering or differential wheels, as long as it has a 

pair of wheels that are parallel to the forwards-backwards motion of the vehicle (like a 

car, pram, tank, truck, RC car, shopping trolley, robot, etc.). 

 

Plan of Action 
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Finding the odometry equations will primarily delve into geometry. This will 

include trigonometry, arcs, angle-equivalence rules, coordinate graphing, and more. 

Many fundamental and advanced geometrical rules will play a crucial role in 

understanding the spatial configurations of the vehicle and its path to generalize the 

motion of the vehicle. In addition to this, other operators like summation (∑) and 

piecewise functions will be used in conjunction with domain/range analysis to bridge the 

gap between theoretical mathematics and practical implementations. 

Geometric outlining software, like Fusion360’s sketching features will be used to 

represent each explored scenario and will be used to verify any resultant equations. 
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EXPLORATION 

Pathing: 

To begin this task, I started with basic geometrical reasoning. The path a vehicle 

takes to get from any point to the next is not a regular geometric shape. The path of the 

vehicle can be any curved line from an infinite spectrum of possibilities. I cannot use any 

of my mathematical knowledge on an irregular line, so I will need to break each path into 

small sections that can be approximated as a friendlier shape.  

Figure 1.1: An example of a vehicle’s path. The sketch is a bird’s-eye view of the situation 

where the rectangle is the vehicle and the long, curving line is an example of the path that 

vehicle may travel. The dimensions assigned to the rectangle could be anything else. 

 

 

Figure 1.2: Another example of a vehicle’s path. Once again, the path is random and irregular, 

making it difficult to use any data of the entire path. 



5 
 

 

 

Initially, I tried dividing any line into smaller, manageable straight lines, but this 

was unsuccessful because the lines would have angles between them that were difficult to 

solve for. Therefore, I divided the vehicle’s path into arcs. Arcs allow me to take distance, 

curve, and angle change into account much more simply. 

Figure 2.1: A section of a vehicle’s path 

 

 

Figure 2.2: This same section as a series of arcs. Each black point on the path is the endpoint 

of an arc (both the end of one arc and the beginning of another). In this way, a series of arcs 

are excellent at approximating a complex line. 
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In this way, any vehicle only needs to assume its travelling in an arc for the last 

few milliseconds (interval length), then perform some calculations over that interval to 

determine the current arc’s change in x-position, y-position, and angle, and sum up these 

values to all the previous values to update its total positioning. After this, the vehicle 

should calculate another arc for the next interval and repeat the process. 

Figure 2.3: The intended use for the upcoming formulas 

 

 

Start a new interval by 
getting the change in 

rotations of each 
wheel since the last 

interval.

Calculate the change 
in 𝜃, 𝑥, and 𝑦 accross 

this interval's arc.

Aggregate this 
interval's values to the 

overall values.



7 
 

 

Wheel-sensor values into path-distances: 

To find the ‘calculations over that interval’, much more geometry was needed. 

Firstly, I needed to determine the distance a wheel has travelled given only the rotation 

and dimensions of that wheel. This will come from the formula for the circumference of a 

circle.  

𝐶 = 2𝜋𝑟 

I know the radius, 𝑟, of the wheel on any given vehicle for this purpose, so I can 

get the distance, 𝐷, the wheel travels by multiplying the circumference with the number 

of rotations, 𝑅 (for a 540° rotation, 𝑅 = 1.5). This 𝑅 is also the value I get from a given 

wheel’s sensor, coming from one of my ‘givens’. 

𝐷 = 𝐶𝑅 

𝐷 = 2𝜋𝑟𝑅 

 

Figure 3: A bird’s-eye view of a vehicle (the rectangle) following the path of an arc. 

The black arc is the robot’s path, the green arcs are different-length arcs that were 

followed by the right and left wheels of the vehicle. Each arc follows the formula 𝐷 =

2𝜋𝑟𝑅 where 𝐷 is the length of the arc, and 𝑅 is the number of rotations from the sensor 

(different between the right and left sides). 
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Finding vehicle heading: 

Each arc will also follow the arc-length formula where 𝐷 is still the length of the 

arc, 𝑟 is the radius of that particular arc (unknown), and 𝜃 is the angle that arc covers 

(unknown): 

𝐷 = 𝑟𝜃 

This formula involves 𝜃, a convenient variable because the change in heading of 

the vehicle is the same as the internal angle of that arc (since the heading of the vehicle 

will be represented just like the unit circle). However, in the above formula, I have two 

unknowns, 𝑟 and 𝜃. 

Fortunately, I will also have two equations because both the left and right arcs are 

different from each other while their angles remain the same.  

𝐷𝐿 = 𝑟𝐿𝜃 𝐷𝑅 = 𝑟𝑅𝜃 

2𝜋𝑟𝑅𝐿 = 𝑟𝐿𝜃 2𝜋𝑟𝑅𝑅 = 𝑟𝑅𝜃 
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To further solve this into a system of equations, I will need another variable in 

common between the left and right arcs. This will happen by the observation that each 

arc’s radius constitutes the central path-arc’s radius (𝑟𝑝) and either and addition or 

subtraction of half the vehicle’s width (𝑤) for the left and right sides respectively (can be 

seen in Figure 3). 

𝑟𝐿 = 𝑟𝑝 + 𝑤 𝑟𝑅 = 𝑟𝑝 − 𝑤 

2𝜋𝑟𝑅𝐿 = (𝑟𝑝 + 𝑤)𝜃 2𝜋𝑟𝑅𝑅 = (𝑟𝑝 − 𝑤)𝜃 

Solving for 𝑟𝑝 in each equation: 

2𝜋𝑟𝑅𝐿 = (𝑟𝑝 + 𝑤)𝜃 2𝜋𝑟𝑅𝑅 = (𝑟𝑝 − 𝑤)𝜃 

2𝜋𝑟𝑅𝐿
𝜃

− 𝑤 = 𝑟𝑝 
2𝜋𝑟𝑅𝑅
𝜃

+ 𝑤 = 𝑟𝑝 

 

Now, setting both equations equal to cancel 𝑟𝑝 and solve for 𝜃: 

2𝜋𝑟𝑅𝐿
𝜃

− 𝑤 = 
2𝜋𝑟𝑅𝑅
𝜃

+ 𝑤 

2𝜋𝑟𝑅𝐿
𝜃

−
2𝜋𝑟𝑅𝑅
𝜃

= 2𝑤 

2𝜋𝑟𝑅𝐿 − 2𝜋𝑟𝑅𝑅
𝜃

= 2𝑤 

2𝜋𝑟𝑅𝐿 − 2𝜋𝑟𝑅𝑅
2𝑤

= 𝜃 

 

This formula allows a vehicle to calculate its change in heading when travelling in 

an arc using only the number of rotations in each wheel and some dimensions of the 

vehicle. The formula above is also generalizable to any arc the vehicle may follow. This 

is because, since the width of the vehicle will never be 0 and none of the other variables 

have bounds, the domain of the function is infinite. This formula will also effectively 

track arcs that turn in an anti-clockwise manner (unlike Figure 3) and will just represent 

those changes as negative.  
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In order to make this formula better standardised for future calculations, I have 

multiplied the left side by −1. This is because the formula currently breaks the 

convention of the unit circle where anti-clockwise rotation is an increase in motion. 

Multiplying by −1 will effectively keep the magnitudes of the results the same, it will 

only flip the direction of increasing angle. 

−2𝜋𝑟𝑅𝐿 + 2𝜋𝑟𝑅𝑅
2𝑤

= 𝜃 

2𝜋𝑟𝑅𝑅 − 2𝜋𝑟𝑅𝐿
2𝑤

= 𝜃 

 

Finding vehicle displacements: 

Figure 4: an extension of the current path modelling which includes the lines for x 

(17.889) and y (4.965) displacement as well as a chord subtending the arc that 

represents the hypotenuse (18.575) of the triangle (in blue) formed with x and y. 

 

 

 

Figure 4 demonstrates another convenient geometry of this system: the x and y 

displacements of the arc-path form a right-triangle with the chord (ℎ) that subtends the 

arc. This means I can use SOH-CAH-TOA trigonometry to solve for these values: 



11 
 

𝑥 = ℎ cos 𝜃 𝑦 = ℎ sin 𝜃 

 

Now, the cosine formula can be used to solve for ℎ by solving on the triangle 

created with the radii of the arc and the chord.  

ℎ2 = 𝑟𝑝
2 + 𝑟𝑝

2 − 2𝑟𝑝𝑟𝑝  cos 𝜃 

ℎ = √2𝑟𝑝2 − 2𝑟𝑝2 cos 𝜃 

ℎ = √2𝑟𝑝2(1 − cos 𝜃) 

I have not solved for any of the arc’s radii yet because I cancelled them in the 

initial system of equations. Choosing either the right or left arc formula would solve 𝑟𝑝. 

Here, I have selected the left side: 

2𝜋𝑟𝑅𝐿
𝜃

− 𝑤 = 𝑟𝑝 

This equation has a limitation in the fact that the sign of 𝜃 matters. In a path’s arc, 

whether the vehicle turned −20° or 20° should not matter because the arc and its chord 

will have the same dimensions. However, the dimensions of the chord’s length will be 

incorrect if the angle is negative in this formula, therefore, the 𝜃 needs to be surrounded 

in an absolute value operator. 

2𝜋𝑟𝑅𝐿
|𝜃|

− 𝑤 = 𝑟𝑝 

 

 Substituting to solve for ℎ, then also substituting into the equations for x and y: 

ℎ = √2(
2𝜋𝑟𝑅𝐿
|𝜃|

− 𝑤)
2

(1 − cos 𝜃) 
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𝑥

= √2(
2𝜋𝑟𝑅𝐿
|𝜃|

− 𝑤)
2

(1 − cos 𝜃) ∙ cos
𝜃

2
 

𝑦 = √2(
2𝜋𝑟𝑅𝐿
|𝜃|

− 𝑤)
2

(1 − cos 𝜃) ∙ sin
𝜃

2
 

 

These equation work well for almost all paths, but they have one small issue: their 

domains are restricted. This is because, since 𝜃 is in the denominator, a result of no angle 

change will cause ℎ to be undefined, ruining the calculations of the interval that the 

vehicle moves on. To solve this, both x and y can use a special-case-handling using a 

piecewise definition. 

Figure 5: the vehicle moving in a straight line, an exception case for the main formulas 

 

 

 

The original equation is still valid for any other angle, but if the robot travelled in 

a straight line without turning, the expression for determining ℎ would have to be just the 

distance travelled by any one of the wheels.  

𝑥 =

{
 
 

 
 
√2(

2𝜋𝑟𝑅𝐿
|𝜃|

− 𝑤)
2

(1 − cos 𝜃) ∙ cos
𝜃

2
, 𝜃 ≠ 0

2𝜋𝑟𝑅𝐿 ∙ cos
𝜃

2
, 𝜃 = 0
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𝑦 =

{
 
 

 
 
√2(

2𝜋𝑟𝑅𝐿
|𝜃|

− 𝑤)
2

(1 − cos 𝜃) ∙ sin
𝜃

2
, 𝜃 ≠ 0

2𝜋𝑟𝑅𝐿 ∙ sin
𝜃

2
, 𝜃 = 0

 

 

I have kept the sine and cosine functions for each of the special straight-line cases 

for future reference since their inclusion still maintains proper results. 

In this way, the value for y when the robot moves straight will always be 0 

because sin
0

2
= 0 and the value for x will always be the distance that the wheel travelled 

(2𝜋𝑟𝑅𝐿) because cos
0

2
= 1. This maintains the consistency with unit-circle conventions 

where 0° is a horizontal heading. 

 

Arc Formulas: 

From the above calculations, using only the radius of the vehicle’s wheel, 𝑟, the 

number of rotations of each wheel’s sensor, 𝑅𝐿 and 𝑅𝑅, and the width of robot, 2𝑤, one 

can determine the vehicle’s change in heading, 𝜃 and cartesian position, 𝑥 and 𝑦, when 

moving in an arc. 

2𝜋𝑟𝑅𝑅 − 2𝜋𝑟𝑅𝐿
2𝑤

= 𝜃 

𝑥 =

{
 
 

 
 
√2(

2𝜋𝑟𝑅𝐿
|𝜃|

− 𝑤)
2

(1 − cos 𝜃) ∙ cos
𝜃

2
, 𝜃 ≠ 0

2𝜋𝑟𝑅𝐿 ∙ cos
𝜃

2
, 𝜃 = 0

 

𝑦 =

{
 
 

 
 
√2(

2𝜋𝑟𝑅𝐿
|𝜃|

− 𝑤)
2

(1 − cos 𝜃) ∙ sin
𝜃

2
, 𝜃 ≠ 0

2𝜋𝑟𝑅𝐿 ∙ sin
𝜃

2
, 𝜃 = 0

 

 



14 
 

These formulas can also be verified for special cases of non-arc pathing.  

If the vehicle travels in a straight line, the geometry no longer follows an arc. 

Fortunately, the math and formulas above still work. The change in angle will be 

correctly represented as 0 (because 𝑅𝐿  and 𝑅𝑅 are equal, so the numerator turns to 0). 

The value of x will also correctly be 0, as handled by the piecewise operator, and the 

value for y would also be correct, since it would use the raw distance that the wheel 

travelled. 

If the vehicle turns in place (as some differential-drive robots can), the formulas 

still work because the wheels would still rotate, giving an accurate angle. The geometric 

arc representation would just have zero-length radii while still maintaining the proper 

central angle. The 
2𝜋𝑟𝑅𝐿

𝜃
 that both the x and y equations share would always equal 𝑤 in 

this special case of turning-in-place, meaning that (
2𝜋𝑟𝑅𝐿

|𝜃|
−𝑤) is 0 and that both entire 

expressions are 0. 

 

Arcs into paths: 

As previously assumed, and shown in Figures 1.1 and 1.2, the current formulas 

only apply to any small segment of a vehicle’s path modelled as an arc. For these 

formulas to work on a full path, one must aggregate all the small arcs’ changes that the 

path is modelled at. For example, the total, global value of the vehicle’s heading 𝜃𝐺  will 

need to be the sum of every arc’s 𝜃: 

𝜃𝐺 = 𝜃1 + 𝜃2 + 𝜃3 +⋯+ 𝜃𝑛 for 𝑛 intervals in the path 

𝜃𝐺 = ∑ 𝜃𝑛

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑛=0

 

𝜃𝐺 = ∑
2𝜋𝑟𝑅𝑅𝑛 − 2𝜋𝑟𝑅𝐿𝑛

2𝑤

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑛=0
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The total, global value of the vehicle’s x-position 𝑥𝐺  will need to be the sum of 

every arc’s 𝑥: 

𝑥𝐺 = 𝑥1 + 𝑥2 + 𝑥3 +⋯+ 𝑥𝑛 for 𝑛 intervals in the path 

𝑥𝐺 = ∑ 𝑥𝑛

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑛=0

 

𝑥𝐺 = ∑

{
 
 

 
 
√2(

2𝜋𝑟𝑅𝐿𝑛
|𝜃𝑛|

− 𝑤)

2

(1 − cos 𝜃𝑛) ∙ cos
𝜃𝑛
2
, 𝜃𝑛 ≠ 0

2𝜋𝑟𝑅𝐿𝑛 ∙ cos
𝜃𝑛
2
, 𝜃𝑛 = 0

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑛=0

 

And the total, global value of the vehicle’s y-position 𝑦𝐺  will need to be the sum 

of every arc’s 𝑦: 

𝑦𝐺 = 𝑦1 + 𝑦2 + 𝑦3 +⋯+ 𝑦𝑛 for 𝑛 intervals in the path 

𝑦𝐺 = ∑ 𝑦𝑛

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑛=0

 

𝑦𝐺 = ∑

{
 
 

 
 
√2(

2𝜋𝑟𝑅𝐿𝑛
|𝜃𝑛|

− 𝑤)

2

(1 − cos 𝜃𝑛) ∙ sin
𝜃𝑛
2
, 𝜃𝑛 ≠ 0

2𝜋𝑟𝑅𝐿𝑛 ∙ sin
𝜃𝑛
2
, 𝜃𝑛 = 0

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑛=0

 

 

Through this, another problem arises. While the value of 𝜃𝐺  will aggregate 

correctly in accordance with the vehicle’s path, 𝑥𝐺  and 𝑦𝐺  will be calculated incorrectly. 

Figure 6 demonstrates a possible case of failure: 

Figure 6: a path with a combination of intervals can mess up the formulas. 
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In this image, the initial values of x and y will be correct after the first interval’s 

arc, but in the next interval, as the vehicle moves in the straight line, the y value that the 

formula would return is 0, meaning 𝑦𝐺  remains the same. This wrong because even as the 

robot is moving in the straight line, the 𝑦𝐺  should still change since the robot is moving 

in a diagonal trajectory upwards. 

To solve this issue, the initial heading of the vehicle also needs to be taken into 

account. Expanding the geometry of this situation and applying some transversal 

equivalency rules, it is found that every arc’s x and y result needs to include the vehicle’s 

initial heading at the start of the arc as part of the calculation.  

Figure 7: another arcing path, but the robot starts at an angle of 18.1 degrees. In this 

case, the formulas above would not yield the correct change in the global x and y 

positions. This is because the blue triangle does not match the actual triangle of x 

(19.135) and y (12.713) displacement. 
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To do this, the section of the formula that converts the ℎ value into the x and y 

components, cos
𝜃𝑛

2
 and sin

𝜃𝑛

2
 respectively, will also add the total heading of the robot 

before the arc (𝜃𝐺). This new consideration will also need to be applied to the straight-

line driving situation (when 𝜃 = 0). This is because, currently, the formula always results 

in 0 for the y value during 𝜃 = 0 which is wrong for the cases that the robot moves in a 

straight line either vertically or diagonally. Straight lines will need to multiply the ℎ value 

with cosine and sine of 𝜃𝐺 . 

𝑥𝐺 = ∑

{
 

 
√2(

2𝜋𝑟𝑅𝐿𝑛
|𝜃𝑛|

− 𝑤)

2

(1 − cos 𝜃𝑛) ∙ cos (
𝜃𝑛
2
+ 𝜃𝐺) , 𝜃𝑛 ≠ 0

2𝜋𝑟𝑅𝐿𝑛 ∙ cos 𝜃𝐺 , 𝜃𝑛 = 0

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑛=0
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𝑦𝐺 = ∑

{
 

 
√2(

2𝜋𝑟𝑅𝐿𝑛
|𝜃𝑛|

− 𝑤)

2

(1 − cos 𝜃𝑛) ∙ sin (
𝜃𝑛
2
+ 𝜃𝐺) , 𝜃𝑛 ≠ 0

2𝜋𝑟𝑅𝐿𝑛 ∙ sin 𝜃𝐺 , 𝜃𝑛 = 0

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑛=0

 

 

Implementation:  

Now that all the special cases have been covered and that the vehicle’s path can 

be tracked as a series of small arcs and lines, these are the equations that successfully use 

only the rotations of each wheel and the dimensions of the vehicle’s wheel and width to 

derive its heading, x position, and y position: 

𝜃𝐺 = ∑
2𝜋𝑟𝑅𝑅𝑛 − 2𝜋𝑟𝑅𝐿𝑛

2𝑤

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑛=0

 

𝑥𝐺 = ∑

{
 

 
√2(

2𝜋𝑟𝑅𝐿𝑛
|𝜃𝑛|

− 𝑤)

2

(1 − cos 𝜃𝑛) ∙ cos (
𝜃𝑛
2
+ 𝜃𝐺) , 𝜃𝑛 ≠ 0

2𝜋𝑟𝑅𝐿𝑛 ∙ cos 𝜃𝐺 , 𝜃𝑛 = 0

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑛=0

 

𝑦𝐺 = ∑

{
 

 
√2(

2𝜋𝑟𝑅𝐿𝑛
|𝜃𝑛|

− 𝑤)

2

(1 − cos 𝜃𝑛) ∙ sin (
𝜃𝑛
2
+ 𝜃𝐺) , 𝜃𝑛 ≠ 0

2𝜋𝑟𝑅𝐿𝑛 ∙ sin 𝜃𝐺 , 𝜃𝑛 = 0

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑛=0

 

 

To implement these equations in real-life, the vehicle needs to have a pair of 

wheels that are parallel to the forwards-backwards motion of the vehicle, include rotation 

sensors (encoders) on those wheels, and have known width and wheel-radius dimensions. 

After this, the main way to use the equations would be to run them through code. Each 

summation (∑) would be represented by a continuous loop, and the piecewise operator 

would be a conditional statement. While tracking position, each interval should be as 

small as reasonably possible, (perhaps less than 20 milliseconds long). In this way, a 

long, intricate path would be treated as thousands of tiny arcs and straight lines.  
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Figure 8: a flowchart representing the general process of tracking a vehicle’s position 

using the equations above. 

 

 

 

Start a new interval by getting the difference in 
sensor values from the previous interval (𝑅𝐿

and 𝑅𝑅)

Use 𝜃 =
2𝜋𝑟𝑅𝑅−2𝜋𝑟𝑅𝐿

2𝑤
to calculate the change in 

heading over this interval.

If 𝜃 = 0, use 𝑥 = 2𝜋𝑟𝑅𝐿 ∙ cos𝜃𝐺

Otherwise, use 𝑥 =

2
2𝜋𝑟𝑅𝐿𝑛
|𝜃𝑛|

−𝑤
2
1 − cos𝜃𝑛 ∙ cos

𝜃𝑛

2
+ 𝜃𝐺

If 𝜃 = 0, use 𝑦 = 2𝜋𝑟𝑅𝐿𝑛 ∙ sin 𝜃𝐺

Otherwise, use 𝑦 =

2
2𝜋𝑟𝑅𝐿𝑛
|𝜃𝑛|

−𝑤
2
(1 − cos𝜃𝑛) ∙ sin

𝜃𝑛

2
+ 𝜃𝐺

Add 𝜃 into 𝜃𝐺 for a new, updated global 
heading.

Add 𝑥 into 𝑥𝐺 for a new, updated global x-
position.

Add 𝑦 into 𝑦𝐺 for a new, updated global y-
position.

End this interval, wait some milliseconds, and 
start this process again.
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CONCLUSION 

Overall, this exploration was a success. I was able to use only information about a 

vehicle’s left and right wheel’s rotations to determine that vehicle’s live heading, x-

position, and y-position no matter what path the vehicle takes as it moves.  

I have also been able to test the validity of these formulas with several varying 

trials in Fusion360’s sketching tools. Here, I can draw out any path, create the arcs/lines 

on that path for each interval, and measure the resulting  2𝜋𝑟𝑅 values to plug-into the 

formulas. I can then check the equation’s result by measuring the difference in x and y 

positions between the starting point and the final point. There has not been any failure in 

all the regular functionality, special scenarios, or edge-cases that I could make, 

demonstrating a practical support for these odometry formulas.  

 

Extensions 

 Although these equations are great at accomplishing the initial outlined task, they 

can be developed further to enhance functionality. One example of this is the 

consideration of an offset in the vehicle’s starting position. In many competition 

scenarios, it is convenient to assign your robot as starting at a different heading or 

coordinate position than 0° and (0,0). This is helpful when setting a reference landmark 

as the origin and beginning the robot’s path somewhere else. The implementation of this 

quite simple: just add the assigned initial heading (𝜃𝑖), x (𝑥𝑖), and y (𝑦𝑖) to their 

respective equations as constants outside the summation. 

𝜃𝐺 = 𝜃𝑖 + ∑
2𝜋𝑟𝑅𝑅𝑛 − 2𝜋𝑟𝑅𝐿𝑛

2𝑤

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑛=0

 

𝑥𝐺 = 𝑥𝑖 + ∑

{
 

 
√2(

2𝜋𝑟𝑅𝐿𝑛
|𝜃𝑛|

− 𝑤)

2

(1 − cos 𝜃𝑛) ∙ cos (
𝜃𝑛
2
+ 𝜃𝐺) , 𝜃𝑛 ≠ 0

2𝜋𝑟𝑅𝐿𝑛 ∙ cos 𝜃𝐺 , 𝜃𝑛 = 0

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑛=0
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𝑦𝐺 = 𝑦𝑖 + ∑

{
 

 
√2(

2𝜋𝑟𝑅𝐿𝑛
|𝜃𝑛|

− 𝑤)

2

(1 − cos 𝜃𝑛) ∙ sin (
𝜃𝑛
2
+ 𝜃𝐺) , 𝜃𝑛 ≠ 0

2𝜋𝑟𝑅𝐿𝑛 ∙ sin 𝜃𝐺 , 𝜃𝑛 = 0

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑛=0

 

  

Another extension to this exploration would have been an evaluation of the 

possibility of asynchronous odometery. As mentioned in the Pathing and Implementation 

sections, this current system relies on the computer to valuate a new interval every few 

milliseconds in order to simplify a complex, irregular line into more manageable and 

friendly sections. The main disadvantage of this is that there is no guarantee that the 

vehicle will fully follow an arcing or straight path in any interval. Rather, the vehicle is 

likely not following any arcing motion, but our intervals are small enough that the 

approximation of whatever motion into arcs still yields a satisfactory result. However, 

after long-use of the same odometry session, a buildup of error may occur where the little 

deviances from ideal behaviour add up to a large inaccuracy.  

In this case, a mathematical system that uses only the final 𝑅𝑅 and 𝑅𝐿 values after 

any complex path may prove to be more accurate and computationally efficient. I tried 

deriving equations that could use the overall wheel-rotation values after the completion of 

any path but was not able to. Accomplishing asynchronous odometry will likely require 

the discovery of some relationship between 𝑅𝑅 and 𝑅𝐿 regardless of the path length, 

shape, or behaviour. 

Figure 9: Can the ending position of a path like this be determined only with the 

overall rotations that it took the right and left wheels to get there? 
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Significance 

Although the concept of odometry is not my idea, and neither are some concepts 

around its derivation (like breaking a path into arc-intervals), I have not been able to find 

this set of equations published anywhere. As mentioned in the Rationale section, almost 

all odometry implementations or explanations I have come across use additional sensor 

input or have inefficient (and inconsistent) systems. On the other hand, the equations 

found here are portable to any calculating system and to any vehicle just by changing the 

𝑟 and 𝑤 constants. These formulas could even be implemented in a spreadsheet! By 

importing the vehicle’s sensor data into a spreadsheet and creating some calculation 

columns with these formulas, the spreadsheet will be able to evaluate intervals and sum 

them up! 

Additionally, the fact that these formulas are not just for robots or cars but could 

be used in any mobile base is another important feature. Just installing some rotation 
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sensors on the wheels of a shopping trolley, a tricycle, or even a battle tank will still yield 

valid results (as long as the wheels don’t slip, and the ground is flat). The odometry 

formulas here can be especially helpful to autonomous robots in stable conditions. 

Currently, many industrial robots will use ultrasonic sensors, object-detection, apriltags, 

and more to track their position because those methods are more reliable than wheels that 

may slip, get stuck, or traverse bumps. However, as the quality of hardware in those 

robots improve, so will the capabilities of wheel-based odometry systems. Robotic 

applications with no need for significant redundancy in controlled environments may 

benefit from the lower complexity and cheaper expense of this odometry system. 

Overall, whether or not this odometry system is implemented in a child’s tricycle, 

a hobbyist’s car, or a businesses’ machines, it will definitely boast a competitive 

advantage after being implemented in my next tournament robot. 
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